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Aerodynamic noise dependent on mean shear 
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New factors illustrating the effect of convection on acoustic radiation are deduced 
from Lighthill’s theory of aerodynamic noise. For sound dependent on mean 
velocity variations for its generation, that is shear noise, the new factors are 
(1 - M cos 0)-3 and (1 - M cos S)-l in contrast with (1 - M cos 4 - 5  for self noise. 

Comparison with the measured far-field directionality patterns reported by 
Howes (1960) shows that the factor (1 - M cos 0)-3 provides considerably better 
agreement with the experimental observations than the self noise factor. 

The source terms discussed by Lighthill (1954) when considering shear ampli- 
fication are examined and shown to contain the terms produced by the analysis 
of Csanady (1966) as well as a new term dependent on the second derivative of 
the mean velocity. 

1. Introduction 
Lighthill (1952) from his representation of aerodynamic sources as a distribu- 

tion of quadrupoles placed in a medium at rest deduced the U8 law. If the sources 
move, a convection amplification effect occurs, increasing the velocity dependence 
over and above the U8 law. The experimental results, on the other hand, show a 
velocity dependence close to U8. In his second paper Lighthill (1954) showed that 
a fraction of the noise is proportional to the mean velocity gradient and this 
leads to  the classScation of noise which is generated only in the presence of a 
mean velocity gradient, as shear noise, and of noise which is generated by tur- 
bulent fluctuations themselves without the necessity of mean velocity variations, 
as self noise. Lighthill suggested that pressure fluctuation in the presence of 
mean shear was the principal mechanism of noise generation but Csanady , 
starting from a slightly different point in Lighthill’s theory, showed that Rey- 
nolds stresses were potentially as important as the pressure fluctuations. 

In  the present paper it is shown that the Reynolds stresses are contained in a 
term set aside by Lighthill and how still another potential acoustic generator, 
pressure and Reynolds stresses in the presence of the second derivative of mean 
velocity, is implied by the quadrupole stress tensor. At the same time the con- 
vection amplification factor is found to be different for the self noise terms, the 
shear noise terms involving the first derivative of the mean velocity and the 
shear noise terms involving the second derivative of the mean velocity. 

In  the next section Lighthill’s expression connecting the acoustic fluctuations 
to the stress tensor qi is used and the stress tensor approximated by the density- 
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velocity product, pui u,, Lighthill’s most convenient expression is that where the 
time differentiation of Tij and the volume integration are performed in a frame 
of reference moving with the stress fluctuations. The volume integration is not 
evaluated instantaneously but at a retarded time resulting from the difference 
of the time of emission between the front and rear of an eddy. It is more con- 
venient to evaluate Lighthill’s expression in a moving frame rather than a 
fixed one because in the moving frame the influence of retarded time is more 
explicit. To a fixed-frame observer situated at  an angle 19 to the direction of 
motion of an observer moving with a convection velocity aM (where a is the 
speed of sound), the effective parts of both the time differentiation and the 
volume integral appear a factor (1 - M cos O)-l larger than they do to the moving- 
frame observer. 

The volume integral contributes one factor ( I  - M COS@)-~  so that the self 
noise fluctuations, which contain a second time derivative, have a convection 
factor (1 - M cos 19) -~ .  The shear noise terms involving the first time derivative 
and a fixed-frame mean velocity gradient have a factor (1 - M cos 0)-2 while the 
terms involving the stress fluctuations and the second derivative of the mean 
velocity have the factor (1 - M cos t9)-1. Both the shear noise convection factors 
produce a less severe increase in the velocity dependence (over the UE law) than 
the self noise. 

2. Sources in the presence of mean shear 
Lighthill (1952) shows under certain restrictions that the density p at a 

position x far from a region of turbulence being convected at  a velocity aM 
through a stationary medium is 

j;:2 t 3  
p ( x ) - p  - --i3_3(1-McosI9)-3 x x. -T..(q,r)dq. 

O - 4na*Ixl 

The moving frame of reference 7% in which the integration is performed is related 
to the fixed frame yi by the relationship 

yi = ri+aM6,,r, 
x - y ‘  

t -  __ 
~ a I -  7 being the retarded time 

The time derivative a/ar in (1) is performed with q held constant. 
For flows where there is a large mean velocity it is useful to separate l& into 

two parts, that explicitly dependent on mean velocity and that which is the 
result of the turbulent fluctuations alone. Following Lighthill (1954, section 5 ) ,  
the time derivative of Tij holding y constant can be transformed by the equations 
of motion (with the viscous stresses neglected) to give 

a au. aui a 
- p U i U j ( y , t )  = p - j + p -  -- (pUiUjUk+~,iipUif~~kipUi). 
at ayi aY j  aYk 

( 2 )  

The relation connecting the two derivatives 8/87 and ajat has been discussed by 
Williams (1963) and we use his equation (1.27) to obtain 



Aerodynamic noise dependent on mean shear 67 

The third term in ( 2 )  is a space derivative and so, when substituted in the volume 
integral of (3), leads to an octupole source which is of the order M2 smaller than 
the quadrupole terms retained. With the remaining two terms of ( 2 )  substituted, 
( 1 )  becomes 

This result differs from that of Lighthill by a factor (1  -2McosB) as he did not 
correctly take account of the difference between the fixed- and moving-frame 
derivatives in (1) and (2). 

If we separate the velocity into a fluctuating and a mean component relative 
to the undisturbed atmosphere, i.e. u, = q + u i ,  the integrand in (4) can be 
separated into the term discussed by Lighthill 

and a second term 

There is, however, implicit dependence on mean velocity in this second term. An 
expression similar to (2) formed from the velocity fluctuations and the momen- 
tum equation reads 

a , , au’. au; 
-- pu. u .  = p -2 + p  - - pu;u, 
atl, 

(sk,pu; + skjpu;) 
aYi  a Y j  aYk 

1 3  

Within the volume integral we can neglect the divergences in ( 6 )  so that 

can be replaced by 

a q. 
+pu!U -. ( 7 )  

kaYk  
The first term in (7), when substituted in (41, becomes 

xi xj 

which with the aid of (3) can be written 

47rCL4lXl3 (1-McosH)-2 ___ a~,P’~u~(q7 7)d1, 

This is the familiar ‘self noise’ term. 
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The second and third terms in (7)  are divergences and so will be neglected. The 
remaining four terms when substituted in (4) become 

The term containing the momentum flux resulting from the product of fluctuat- 
ing velocities was identified by Csanady (1966). The other term, the rate of 
change of momentum in the presence of a mean velocity gradient, i.e. 

would be octupole and negligible to  this order if aq: U,/ay, were constant (by the 
principle of conservation of momentum). To emphasize the non-zero part of the 
integral we can manipulate this term with the aid of (3) to give the fixed-frame 
time derivative 

An application of the momentum equation gives 

If the integrand is grouped as a divergence, the only quadrupoIe part remaining is 

Equation (10) tends to suffer from the same difficulty as (9), though less obviously, 
in that the integrand contains momentum terms of the form 

which, for a constant value of the part in square brackets, might integrate to 
zero. 

Grouping all the shear noise terms, one gets 

Equations (8) and (11) show that the acoustic fluctuations can be considered 
the result of three different types of terms, self noise which depends on the second 
time derivative and shear noise which depends on two types of terms, one with 
the first derivative of velocity and one involving the second derivative of velocity. 
The self noise term becomes increasingly important a t  higher convection Mach 
numbers because of the factor (1 - M cos 

t Incompressible flow for the velocities Ui is assumed. 
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3. Sources in an idealized jet 
The expression for the acoustic intensity becomes very lengthy since it is 

formed from the products of all the above terms. In order to have some idea of 
the principal terms in the practical case of a round jet, an idealized flow is postu- 
lated. Near the centre-line of a self-preserving mixing layer, springing from a 
nozzle (see figure 1 for co-ordinates), the flow is two-dimensional with only one 
mean gradient aUl/ay, and no lateral velocity U,. As the mean velocity has a 
point of inflexion near the mixing layer centre-line, the velocity gradient is 
assumed to be constant over the region of non-zero correlation. Away from the 
mixing layer centre-line this idealization becomes increasingly unrealistic, but 
this may be of little consequence because the most efficient noise generators are 
located near the centre of the mixing layer. 

FIGURE 1. Co-ordinates for a mixing layer. 

The acoustic intensity is u:/po times the sum of the mean products of the terms 
in (8) and (l l) ,  that is 

We shall ignore any possible correlation between the shear and self-noise terms 
and, as we are considering a flow where the second derivative of the mean velocity 
is zero, the terms in the second part of (1 1) are zero. For such a flow the intensity 
becomes 

where, since we wish to consider the radiation from a finite volume of turbulence, 
the outer integration is with respect to stationary co-ordinates (for further 
discussion see Williams 1963). 
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Equation (13) contains the two convection factors (1 - M cos @-5 and 
( 1  -Mcos/3-3 that are applicable for the idealized mixing layer. If second 
derivatives of the mean velocity occur there is the additional factor (1 - M cos 13)-l. 

4. Total power output from convected sources 
Convection of the sound sources increases the total power radiated, the 

increase in power over a stationary source being given by the surface integral 

where n = 5 for self noise and n = 3 or 1 for shear noise. 

0.1 0.2 0.3 0.4 0.5 1 .o 
Convection Mach no. 

FIGURE 2. Amplification of total radiation due to convection term (1  - M cos 8)-”, 
for a lateral quadrupole. 

This integral has been evaluated for a lateral quadrupole with i = ,j = 1, 
1 = m = 2 for both self noise and shear noise. The amplification by convection of 
the total radiation compared with that from this source at M = 0 is shown in 
figure 2. The substantial reduction in amplification for shear noise is evident. 

5. Experimental directionality patterns 
Howes (1960) has collected the results of a number of experiments t o  determine 

the directionality patterns of small air jets. We can compare these results with 
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the two convection patterns of (13)) (1 - M cos 0)-3 and (1 - M cos 19) -~ .  Wills 
(1964) has measured the convection velocity at  the centre of a mixing layer 
(where one would expect most of the sound to originate) and found it to vary 
slowly, being about 0.63 of the exit velocity. Thus, for the range of exit velocities 
Howes used, the convection Mach number lies between M = 0.5 to M = 0.62. 
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FIGURE 3. Directionality patterns fitted to Howes’s (1960) data. Symbols as in his figure 16. 
--, (1-0.55 cos t 1 - 3 ;  - -  - -  , ( I  - 0.55 cos e)p. 

Figure 3 shows an attempt to fit the two convection patterns (1  - M C O S ~ ) - ~  

and (1 - M cos 0)-5 (multiplied by the same arbitrary constant) to Howes’ 
results. We have, of course, neglected such phenomena as the refraction of the 
sound and the preferred orientation of the quadrupoles but the result is still of 
importance as it shows that the new shear noise factor (1 - M cos 0)-3 provides a 
much better fit. The large reduction in intensity at  small angles of 0 is probably 
due to refraction. 

6. Conclusions 
The quadrupole forcing function representing the generators of aerodynamic 

noise is dependent upon several different mechanisms, fluctuating stresses 
acting on themselves, fluctuating stresses in the presence of a mean shear and 
fluctuating stresses in the presence of the second derivative of mean velocity. 
In  a round jet, only the first two of these are apparently of any practical signi- 
ficance, the second one possibly being dominant. Each of these mechanisms has 
a different convection factor associated with it. The factor (1 - M C O S ~ ) - ~  for 
the shear noise term involving the first mean velocity derivative shows a rea- 
sonable agreement with the experimental results on round jets. 
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